e kind of a Pointless* Talk

It’s not about tacit programming!

'\ Jan Sliacky



Terminology

Value-level Terms (Expressions)
Types

Kinds



EXpressions

23
“Hello World!”
23 + 42

True & False



Types

> 23 v Int

> “Hello World!” :: String

> 23 + 42 :: Int (assuming + :: Int = Int — Int)

> True & False :: Bool (assuming & :: Bool — Bool — Bool)



Kinds

Types of Types




Kind * aka Type

Types of kKind * can have values.



Kinds of Simple Types

> Int 2 *
> String :: *

> Int — Int — Int :: *



Kinds of Too Simple Types

> Int :: *
> String :: *

> Int — Int — Int :: *



Custom Data Types

Still :: =*
data Bool = True | False

N1l

data List'of ' Ints =
| Cons Int List’of’Ints

N1l
Cons 1 (Cons 2 (Cons 3 Nil))

empty
a' few' numbers



Polymorphic Data Types

Types Abstracting over other Types

data List a = Nil
| Cons a (List a)

data Maybe a = Nothing
| Just a

data Either a b = Left a
| Right b



Kinds of Polymorphic Data Types

aka Type Constructors

> L1st 1 % = *
> Maybe 1 * — %

> FEither 2 * > * > *



Higher-kinded Types

Types Abstracting over Types Abstracting over Types



Higher-kinded Types

Types Abstracting over (Types Abstracting over Types)



Higher-kinded Types

data Contailner m a Contain (m a)

> :kind Container



Higher-kinded Types

Contain (m a)

data Container m a

> :kind Container

> Container :: (¥ = %) = * — *



example

data Container m a = Contain (m a)

list’'of'1ints

Contain (Cons 1 Nil)

> :type list’of’1ints

> list’'of"ints :: Container List Int



Grammar of Kinds

Kind k, 1

| k = 1



Kind Polymorphism

Exposing lies (mostly mine)

data Contailner m a Contain (m a)

> :kind Container



Kind Polymorphism

Exposing lies (mostly mine)

Contain (m a)

data Container m a

> :kind Container

> Container :: (k = %) = k = =%



Custom Kinds

For more kind-level goodness.

data Response 1 R String

data Valaid
data Unknown



data Response 1 = R String

data Valid
data Unknown

validate :: Response Unknown — Maybe (Response Valid)



data Response 1 = R String

data Valid
data Unknown

validate :: Response Unknown — Maybe (Response Valid)

derp :: Response Bool



data Response 1 = R String

data Valid
data Unknown

nse Unknown — Maybe (Response Valid)

derp :: Response Bool



Back to the drawing board

Let’s engage those galaxy brains




R String

data Response (i :: Response’I)
kind Response’l

data Valid :: Response’l
data Unknown :: Response’l

validate :: Response Unknown — Maybe (Response Valid)



data Response (i1 :: Response’I) = R String
kind Response’l

data Valid :: Response’l
data Unknown :: Response’l

validate :: Response Unknown — Maybe (Response Valid)

derp :: Response Bool




What about Haskell?

Haskell unifies Types and Kinds.

Extensions like DataKinds promote types into k1nds and data constructors
Into types.

Haskell does not provide a facility showed in the previous slides. (It does not
need it though.)



Values with Types of Custom Kinds

The what now?

The Fantasy Land part of the Talk.



Kind * aka Type

Types of kKind * can have values.



Kind * aka Type

Only types of kind * can have values.



Kind * aka Type




kind Foo’Kind
type Foo'Type :: Foo'Kind

data Foo ' Type = Foo’Val



kind Foo’'Kind

type Foo'Type

Foo’'Kind

data Foo ' Type = Foo’Val

some’ foo

Foo’'Val



kind Foo’Kind
type Foo'Type :: Foo’ Kind
data Foo ' Type = Foo’Val

some’' foo = Foo'Val

> :type some’ foo



kind Foo’'Kind
type Foo'Type :: Foo’ Kind

data Foo ' Type = Foo’Val

some’' foo = Foo'Val

> :type some’ foo

> some’'foo :: Foo'Type



kind Foo’Kind
type Foo'Type :: Foo’ Kind

data Foo ' Type = Foo’Val

id"foo :: V (a :: Foo'Kind) . a = a
1d’foo x = X



kind Foo’Kind
type Foo'Type :: Foo’Kind

data Foo ' Type = Foo’Val

id"foo :: V (a :: Foo'Kind) . a = a
1d'foo x = X

> 1d'foo Foo'Val
> Foo'Val

> 1d'foo True
> ERROR!



kind Foo'Kind
type Foo'Type :: Foo’Kind

data Foo ' Type = Foo’Val

id"foo :: V (a :: Foo'Kind) . a = a
1d'foo x = X

> 1d'foo Foo’'Val
> Foo'Val

> 1d'foo True
> ERROR!



So what about our ordinary 1dentity function?

1d X = X
> 1d Foo'Val

> ERROR!



Let’s fix that

The real identity™

1d :: a — a
1d X = X



Let’s fix that

The real identity™

id :: V (a :: *) . a = a
1d X = X



Let’s fix that

The real identity™

id :: V (a :: *) . a = a
1d X = X
real’id :: V (a :: k) .

real’id x = X



Let’s fix that

The real identity™

id :: V (a :: *) . a = a
1d x = X
real’id :: V (a :: k) . a = a

real’id x = X




real’id :: V (a :: k)
real’1d x = x

> real’id Foo'Val
> Foo'Val

> real’1id True
> Jrue



Uh, oh

data Broken (x :: k) = Break x



Uh, oh

data Broken (x :: k) = Break x

broken :: Broken Maybe
broken = Break 7?77?77



Uh, oh

data Broken (x :: k) = Break x

broken :: Broken Maybe
broken = Break 7?77?77




No wait, we can fix this!

But how?

Maybe with sub-kinding?

Maybe with set-theoretical kind polymorphism?




Sub-kinding?

A < B means A is a sub-kind of B

kind Foo'Kind < =
type Foo'Type :: Foo’ Kind

data Foo’'Type = Foo'Val

real’id :: V (a < *) . a

%



Set-theoretical kind polymorphism?

* | Foo’'Kind is a union of those two kinds.

real’id :: V (a :: * | Foo'Kind) . a = a
real’id x = X



That is a Different Talk though.



Kind * aka Type

Only types of kind * can have values.



Kind * aka Type




Kind # in Haskell

Kind for unlifted types.

Also see levity-polymorphism in GHC.



Remember to be kind!



Resources

e https:.//www.parsonsmatt.org/201/7/04/26/
basic type level programming in haskell.html

» https://downloads.haskell.org/~ghc/7.8.4/docs/html/users guide/kind-
polymorphism.html

o https://wiki.haskell.org/Kind


https://www.parsonsmatt.org/2017/04/26/basic_type_level_programming_in_haskell.html
https://www.parsonsmatt.org/2017/04/26/basic_type_level_programming_in_haskell.html
https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/kind-polymorphism.html
https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/kind-polymorphism.html
https://wiki.haskell.org/Kind

