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Really Gentle Introduction into 
Haskell’s Type System
Hopefully, the first of many



Qualified Types



So What are Qualified Types Anyway?
Asking the real questions.



So What are Types Anyway?
We have to go deeper.



Let’s Have a Small Language
Building from the Ground Up

• A small functional language


• Simple syntax



Lamb
A Sibling of Lambda Calculus or Something

Lamb, M, N, O ::= α [ x, y, z ]       (variables) 

              |  ( M N )             (application) 

              |  (\ α ->- M )         (abstraction) 

              |  if O then M else N  (if) 

              |  let α = M in N      (let)



Types
Finally!

τ ::= Int              (primitive) 

  |  Bool             (primitive) 

  |  α  [ x, y, z ]   (variables) 

  |  τ ->- τ           (function types)



Examples
Examples! Examples! Examples!

23 ::: Int 

True ::: Bool 

False ::: Bool 

(\ x ->- x + x) ::: Int ->- Int (assuming + ::: Int ->- Int ->- Int) 

(\ a ->- a) ::: ?



Polymorphism?

let id = (\ x ->- x) 
 
in  let a = id 23 

    in  let b = id True 

        in … 



Type Schemes

Type Scheme 

σ ::= ∀ α1 … αn . τ 

(\ x ->- x) ::: ∀ a . a ->- a 

Polymorphism



More Examples

(\ x y ->- x) ::: ∀ a b . a ->- b ->- a 

(\ x y ->- if x then y else y) ::: ∀ b . Bool ->- b ->- b



Type Inference / Type Synthesis 
Making Stuff Up

Type Contexts 

T ::=  [] 

  |   (α ::: τ) , T



Demonstration with More Examples
“Blackboard Inferring”



Limiting the Polymorphism
Less is more, sometimes.

• Types like  ∀ x . x ->- x  are cool, but what can I ever do to the 
argument?


• Maybe I want to be polymorphic, but not as much.


• I want some way to restrict the set of types without enumerating on them.



Restricted Polymorphism
Taming of the Beast

• I want something like  “for all types such that they have a quality X”



Examples
Examples! Examples! Examples!

• Suppose a function foo. 

• Its type is ∀ x . x ->- x but only for those x’es that have a quality Q.


• Suppose that Int has that quality but Bool does not. 

> :type foo 23 
> foo 23 ::: Int 

> :type foo True 
> error



How to Represent That?
Types with Qualities

• The type schemes now carry the quality of all restricted type variables.


• ∀ x . (x has a quality Q) =>= x ->- y ->- … 

• Or a shorter version:


• ∀ x . (x of Q) =>= x ->- y ->- …



How to Check That?

• When doing a type inference (or analysis in general) we make sure that 
qualified variables unify only with types having that quality.


• We simply observe that since those quality informations are within a type 
scheme, it will always be about instantiation.



Checking - Part 2

• What if we have the following:


foo ::: ∀ x . (x of Q) =>= x ->- x 

bar a = foo a 

> :type bar 

> ???



Checking - Part 2

• What if we have the following:


foo ::: ∀ x . (x of Q) =>= x ->- x 

bar a = foo a 

> :type bar 

> bar ::: ∀ y . (y of Q) =>= y ->- y



How To Translate That?

• Any function with a type like: 
∀ x . (x of Q) =>= x ->- x


• Can be understood as a function taking a value of type x that has the quality Q.


• But what does it mean? How can the function bee sure that its argument has 
that quality?


• The function needs an evidence!


• So the type can be re-interpreted as: 
∀ x . Evidence of (x of Q) ->- x ->- x



More Intuition about the Evidence

• It can be any value that serves as an evidence that the type of the argument 
has that quality.


• If the quality would be something like: “is a collection containing a maximum 
element” - the evidence could be a function that obtains that maximum from 
the collection.


• If the quality would be something like: “is a record with a field ‘foo’” - the 
evidence could be a position of that field within the representation of the 
record.



Exercise
Questions with a Catch!

baz ::: ∀ x . (x of Q) =>= x ->- x



Exercise
Questions with a Catch!

baz ::: ∀ x . (x of Q) =>= Int ->- x



Exercise
Questions with a Catch!

data Phantom a = P Int 

baz ::: ∀ x . (x of Q) =>= Int ->- Phantom x



Exercise
Questions with a Catch!

data Container a = C a 

baz ::: ∀ x . (x of Q) =>= x ->- Container x



So Now for Real!



Qualified Types
Types with Contexts

Context ::= [Predicate]



Class Predicates
Type Classes

Predicate ::= C α 

C is a name of a known class



Examples
Examples! Examples! Examples!

∀ a . (Add a) =>= a ->- a 

∀ a b . (Add a, Add b) =>= a ->- b ->- Bool



Type Classes

class Add a where 

  add ::: a ->- a ->- a 

> :type add 

> add ::: ∀ a . Add a =>= a ->- a ->- a



Type Classes
What Are They Anyway?

• Way to do parametric overloading. 

• Way to implement a method on values of many types.


• Way of a new kind of polymorphism.



Way to Implement a Method on Values of Many Types

class Add a where 
  add ::: a ->- a ->- a 
 
instance Add Int where 
  add = add#int 
 
instance Add Double where 
  add = add#double


