PROPERLY R=JASED TESTING

SOME TYPESCRIPT THING

import { property } fron

(a: string, b: string, c: string) => {

return (a + b) + c === a + (b + ¢);

import { property } from "fast-check";

const sort = (xs: number[]) => xs.sort((a, b) => a - b);

property(
"sort is idempotent”,
(xs: number[]) => {

let sorted = sort(xs);

let doubleSorted = sort(sorted);

return sorted.every((x, i) => X

doubleSorted[i]);

Data
generator

=

properties

=

_/'

Report with
counter—-examples

QUICKCHECK

import Test.QuickCheck

prop _sort :: [Int] -> Bool

prop sort xs = sort xs == sort (reverse Xxs)

sorted :: Ord a = [a] — Bool
sorted (x:y:ys) = x < y && sorted (y:ys)

sorted _ = True

-- A (false) property stating that every list is sorted
prop_sorted :: [Int] — Bool

prop_sorted xs = sorted Xs

> verboseCheck prop_sorted

Passed:
Passed: (]
(]
Passed:
[1,3]
Passed:
[] Passed:
[2,3]
Passed: Failed:
(el [2,1]
Failed:
[2,1;3] xxx Failed! Falsified (after 4 tests and 3 shrinks):

[1,6]

import Test.QuickCheck

data Tree a = Leaf | Node (Tree a) a (Tree a) deriving (Eq,

instance Arbitrary a => Arbitrary (Tree a) where

arbitrary = sized tree

where
tree @ = return Leaf
tree n = frequency [(1, return Leaf),

(4, do x <- arbitrary
1 <- tree (n “div’ 2)
r <- tree (n “div’ 2)
return (Node 1 x r))]

prop_height :: Tree Int -> Bool
prop_height t = (height t >= 0) && (height (Leaf) == 0)
where height Leaf = 0
height (Node 1 _ r) = 1 + max (height 1) (height r)

Show)

MOAR [OD E’ https://tinyurl.com/properly-based-kop

impl Arbitrary for Instance {
fn arbitrary(g: &mut Gen) -> Instance {
Instance {
id: i32::arbitrary(g),
m: u32::arbitrary(g).min(10_000),
items: vec![<(u32, u32)>::arbitrary(g)]
.into_iter()

.chain(Vvec::arbitrary(g).into_iter())

.take(10)
.map(|(w, ¢): (u32, u32)| (w.min(10_000), Cc % 10_000))
.collect(),
}
}
#[quickcheck]

fn gc_bb_is_really_correct(inst: Instance) {

assert_eq! (inst.branch_and_bound().cost, inst.brute_force().cost);

https://tinyurl.com/properly-based-kop

COMMON TECHNIQUES

Arbitrary data generators

Smart arbitrary instances (corner-cases first)
Multiple strategies

Shrinking algorithms (state space explosion)
Test case limits

Failure thresholds

Performance invariants

Models of concurrency

Persistent PRNG state

Combine with unit testing

DRAWBACKS

Generating structured data is hard (ASTs)
Bugs in the test suite (invalid data)

Limited generators may give false confidence
A test is not a proof!

USE PROPERTY-BASED TESTING!

It’s often surprisingly easy to provide generators
Shrinking rules

No need to solve the general problem

It works even in c++

https://github.com/emil-e/rapidcheck

RANDOM ADVICE

e Value in normal form must never capture variables

