


(a * 2) / 2

= a

…



(a * 2) / 2

= a * (2 
/ 2)

= a * 1

= a





The secrets of arbor syntaxis reducto
(a * b) / c ⇄ a * (b / c)

a / a ⇄ 1

a * 1 ⇄ a

a * 2 ⇄ a << 1
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a * 1 ⇄ a

a

a * 1

a * 1 * 1

a * 1 * 1 * 1 …



(a * b) / c ⇄ a * (b / c)

a / a ⇄ 1

a * 1 ⇄ a

a * 2 ⇄ a << 1

The secrets of arbor syntaxis reducto



a * 2 ⇄ a << 1

The secrets of arbor syntaxis reducto



a * 2 ⇄ a << 1

(a * 2) / 2
(a << 1) / 2 …
  what now?



#lang-talk



Harry Potter
And

The Methods of
Equality Saturation

they see me rowling…







a * 2 → a << 1





(a * 2) / 2 → a * (2 / 2)



2 / 2 → 1
a * 1 → a



a
a * 1
a * 1 * 1

a * 1 * 1 * 1 …

in just

 4 e-classes!
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a * 1
a * 1 * 1

a * 1 * 1 * 1 …

and it’s
 saturated!



a
a * 1
a * 1 * 1

a * 1 * 1 * 1 …

and it’s
 saturated!







Not the end of the line just yet
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Not the end of the line just yet



Equality saturation



Equality saturation



Efficient equality saturation





What about semantics?

a / a ⇄ 1



What about semantics?

a / a ⇄ 1



Constant folding

Analysis adds extra data 
to each e-class
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Constant folding

Analysis adds extra data 
to each e-class



Constant folding

Analysis adds extra data 
to each e-class



All you need is love a lattice!
A join-semilattice (partial 
order with a least upper 
bound) will do.



Analysis + E-classes = ❤
- Lift program analyses to e-class 
level

- Conditional & dynamic rewrites
- Other e-graph “hacks”
- Pruning, debug assertions, 
on-the-fly extraction



The e-class analysis invariant



Other egg stuff
- Custom rewrites
- Logging
- Rule scheduling
- Batch simplification
- Saturation checking



Is it any good?
● Ruler automatically infers rewrite rules using equality saturation. OOPSLA 

2021
● Diospyros automatically vectorizes digital signal processing code. ASPLOS 

2021
● Tensat optimizes deep learning compute graphs both better and faster (up to 

50x) than the state of the art. MLSys 2021
● Herbie improves the accuracy of floating point expressions. The egg-herbie 

library made parts of Herbie over 3000x faster! PLDI 2015
● Szalinski shrinks 3D CAD programs to make them more editable. PLDI 2020
● SPORES optimized linear algebra expressions up to 5x better than 

state-of-the-art. VLDB 2020
● Glenside explores the design space of hardware accelerators for a given deep 

learning program. MAPS 2021
● The folks at Intel have built a tool for Automating Constraint-Aware 

Datapath Optimization using egg. DAC 2023

https://github.com/uwplse/ruler
https://asplos-conference.org/abstracts/asplos21-paper142-extended_abstract.pdf
https://arxiv.org/abs/2101.01332
http://herbie.uwplse.org/
https://github.com/herbie-fp/egg-herbie
https://github.com/uwplse/szalinski
https://arxiv.org/abs/2002.07951
http://github.com/gussmith23/glenside
https://arxiv.org/abs/2303.01839
https://arxiv.org/abs/2303.01839






Do you need to turn one expression into another? use egg!
- E-graphs are efficient and general
- Avoid many headaches associated with term 

rewriting
- IR design is crucial



title


