


(a * 2) / 2

= a

…



(a * 2) / 2

= a * (2 
/ 2)

= a * 1

= a





The secrets of arbor syntaxis reducto
(a * b) / c ⇄ a * (b / c)

a / a ⇄ 1

a * 1 ⇄ a

a * 2 ⇄ a << 1



(a * b) / c ⇄ a * (b / c)

a / a ⇄ 1

a * 1 ⇄ a

a * 2 ⇄ a << 1

The secrets of arbor syntaxis reducto



a * 1 ⇄ a

a

a * 1

a * 1 * 1

a * 1 * 1 * 1 …



(a * b) / c ⇄ a * (b / c)

a / a ⇄ 1

a * 1 ⇄ a

a * 2 ⇄ a << 1

The secrets of arbor syntaxis reducto



a * 2 ⇄ a << 1

The secrets of arbor syntaxis reducto



a * 2 ⇄ a << 1

(a * 2) / 2
(a << 1) / 2 …
  what now?



#lang-talk



Harry Potter
And

The Methods of
Equality Saturation

they see me rowling…







a * 2 → a << 1





(a * 2) / 2 → a * (2 / 2)



2 / 2 → 1
a * 1 → a



a
a * 1
a * 1 * 1

a * 1 * 1 * 1 …

in just

 4 e-classes!



a
a * 1
a * 1 * 1

a * 1 * 1 * 1 …

and it’s
 saturated!



a
a * 1
a * 1 * 1

a * 1 * 1 * 1 …

and it’s
 saturated!







Not the end of the line just yet



Not the end of the line just yet



Not the end of the line just yet



Equality saturation



Equality saturation



Efficient equality saturation





What about semantics?

a / a ⇄ 1



What about semantics?

a / a ⇄ 1



Constant folding

Analysis adds extra data 
to each e-class



Constant folding

Analysis adds extra data 
to each e-class



Constant folding

Analysis adds extra data 
to each e-class



Constant folding

Analysis adds extra data 
to each e-class



All you need is love a lattice!
A join-semilattice (partial 
order with a least upper 
bound) will do.



Analysis + E-classes = ❤
- Lift program analyses to e-class 
level

- Conditional & dynamic rewrites
- Other e-graph “hacks”
- Pruning, debug assertions, 
on-the-fly extraction



The e-class analysis invariant



Other egg stuff
- Custom rewrites
- Logging
- Rule scheduling
- Batch simplification
- Saturation checking



Is it any good?
● Ruler automatically infers rewrite rules using equality saturation. OOPSLA 

2021
● Diospyros automatically vectorizes digital signal processing code. ASPLOS 

2021
● Tensat optimizes deep learning compute graphs both better and faster (up to 

50x) than the state of the art. MLSys 2021
● Herbie improves the accuracy of floating point expressions. The egg-herbie 

library made parts of Herbie over 3000x faster! PLDI 2015
● Szalinski shrinks 3D CAD programs to make them more editable. PLDI 2020
● SPORES optimized linear algebra expressions up to 5x better than 

state-of-the-art. VLDB 2020
● Glenside explores the design space of hardware accelerators for a given deep 

learning program. MAPS 2021
● The folks at Intel have built a tool for Automating Constraint-Aware 

Datapath Optimization using egg. DAC 2023

https://github.com/uwplse/ruler
https://asplos-conference.org/abstracts/asplos21-paper142-extended_abstract.pdf
https://arxiv.org/abs/2101.01332
http://herbie.uwplse.org/
https://github.com/herbie-fp/egg-herbie
https://github.com/uwplse/szalinski
https://arxiv.org/abs/2002.07951
http://github.com/gussmith23/glenside
https://arxiv.org/abs/2303.01839
https://arxiv.org/abs/2303.01839






Do you need to turn one expression into another? use egg!
- E-graphs are efficient and general
- Avoid many headaches associated with term 

rewriting
- IR design is crucial



title


